Exercise 70

Let $g(x)=e^{c x}+f(x)$ and $h(x)=e^{k x} f(x)$, where $f(0)=3, f^{\prime}(0)=5$, and $f^{\prime \prime}(0)=-2$.
(a) Find $g^{\prime}(0)$ and $g^{\prime \prime}(0)$ in terms of c.
(b) In terms of k, find an equation of the tangent line to the graph of h at the point where $x=0$.

Solution

Take the derivative of $g(x)$.

$$
\begin{aligned}
g^{\prime}(x) & =\frac{d}{d x}[g(x)] \\
& =\frac{d}{d x}\left[e^{c x}+f(x)\right] \\
& =\frac{d}{d x}\left(e^{c x}\right)+\frac{d}{d x}[f(x)] \\
& =e^{c x} \cdot \frac{d}{d x}(c x)+f^{\prime}(x) \\
& =e^{c x} \cdot(c)+f^{\prime}(x) \\
& =c e^{c x}+f^{\prime}(x)
\end{aligned}
$$

Evaluate it at $x=0$.

$$
g^{\prime}(0)=c e^{0}+f^{\prime}(0)=c+5
$$

Find the second derivative.

$$
\begin{aligned}
g^{\prime \prime}(x) & =\frac{d}{d x}\left[g^{\prime}(x)\right] \\
& =\frac{d}{d x}\left[c e^{c x}+f^{\prime}(x)\right] \\
& =c \frac{d}{d x}\left(e^{c x}\right)+\frac{d}{d x}\left[f^{\prime}(x)\right] \\
& =c\left(c e^{c x}\right)+f^{\prime \prime}(x) \\
& =c^{2} e^{c x}+f^{\prime \prime}(x)
\end{aligned}
$$

Evaluate it at $x=0$.

$$
g^{\prime \prime}(0)=c^{2} e^{0}+f^{\prime \prime}(0)=c^{2}-2
$$

Plug in $x=0$ to $h(x)$ to find the corresponding y-value for the point on the curve.

$$
h(0)=e^{0} f(0)=3
$$

All that's needed now is the slope at $x=0$. Differentiate $h(x)$

$$
h^{\prime}(x)=\frac{d}{d x}[h(x)]=\frac{d}{d x}\left[e^{k x} f(x)\right]=\left[\frac{d}{d x}\left(e^{k x}\right)\right] f(x)+e^{k x} f^{\prime}(x)=\left(k e^{k x}\right) f(x)+e^{k x} f^{\prime}(x)
$$

and evaluate it at $x=0$.

$$
h^{\prime}(0)=k f(0)+f^{\prime}(0)=3 k+5
$$

Therefore, the equation of the tangent line to $h(x)$ at $(0,3)$ is

$$
y-3=(3 k+5)(x-0) .
$$

